References

BONNET, J. J. & JEANNIN, Y. (1972). Acta Cryst. B28, 1079-1085.

DECOU, D. F. JR (1964). Dissertation No. 64-9987. Univ. Microfilms Inc., Ann Arbor, Michigan, USA.

GANELLIN, C. R. (1973). J. Med. Chem. 16, 620–623.

- GANELLIN, C. R., PEPPER, E. S., PORT, G. N. J. & RICHARDS, W. G. (1973). J. Med. Chem. 16, 610-616.
- GANELLIN, C. R., PORT, G. N. J. & RICHARDS, W. G. (1973). J. Med. Chem. 16, 616–620.

GŁÓWKA, M. L. (1982). Unpublished results.

Acta Cryst. (1990). C46, 1027-1029

- GŁÓWKA, M. L., GAŁDECKI, Z., KAZIMIERCZAK, W. & MAŚLIŃSKI, C. (1980). Acta Cryst. B36, 2148–2150.
- GŁÓWKA, M. L. & GILLI, G. (1989). Acta Cryst. C45, 408-410.
- SHELDRICK, G. M. (1976). SHELX76. A program for crystal structure determination. Univ. of Cambridge, England.
- SHELDRICK, G. M. (1986). SHELXS86. Program for crystal structure solution. Univ. Göttingen, Federal Republic of Germany.
- VEIDIS, M. V., PALENIK, G. J., SCHAFFRIN, R. & TROTTER, J. (1969). J. Chem. Soc. A, pp. 2659–2666.
- YAMANE, T., ASHIDA, T. & KAKUDO, M. (1973). Acta Cryst. B29, 2884-2891.

Structure of 1-Morpholinobenzo[c]cinnoline

BY TUNCER HÖKELEK*

Hacettepe University, Department of Physics, Beytepe, Ankara, Turkey

DAVID J. WATKIN

Oxford University, Chemical Crystallography Laboratory, 9 Parks Road, Oxford, England

AND EMINE KILIÇ AND CELAL TÜZÜN

Ankara University, Department of Chemistry, Tandoğan, Ankara, Turkey

(Received 5 June 1989; accepted 29 August 1989)

Abstract. $C_{16}H_{15}N_3O$, $M_r = 265 \cdot 316$, monoclinic, $P2_1/c$, $a = 10 \cdot 572$ (5), $b = 11 \cdot 954$ (6), $c = 11 \cdot 222$ (2) Å, $\beta = 108 \cdot 13$ (2)°, $V = 1347 \cdot 8$ (1·4) Å³, Z = 4, $D_m = 1 \cdot 30$, $D_x = 1 \cdot 307$ g cm⁻³, λ (Cu K α) = 1·54180 Å, $\mu = 6 \cdot 373$ cm⁻¹, F(000) = 560, T = 293 K, R = 0.046 for 2103 observed reflections. The two benzenoid rings are each planar but twisted with respect to each other with a torsion angle of $11 \cdot 7^\circ$; in benzo[c]cinnoline the corresponding torsion angle is $2 \cdot 5^\circ$.

Introduction. Benzo[c]cinnoline is known to be a mutagen (Leary, Lafleur, Liber & Blemann, 1983), and some of its derivatives are known to have antirheumatic (Matter, 1957; Erlenmeyer, 1958), herbicidal (Entwistle, Terence & Barton, 1981) and carcinogenic activity (Ashby, Styles & Paton, 1980). The structures of benzo[c]cinnoline (van der Meer, 1972) and octachlorobenzo[c]cinnoline (King, Mac-Bride, Muir & Wright, 1983) have been described, as have those of benzo[c]cinnoline complexes with bis(tricarbonyliron) (Doedens, 1970) and copper(I) benzoato (Toth, Floriani, Chiesi-Villa & Guastini, 1987).

As far as we know, there are no reports on the structures of benzo[c]cinnolines substituted with

alkyl, alkoxy, aminoalkyl or dialkylamino groups. The present paper is the first of a series devoted to structural studies on related pyrrolidino-, piperidinoand morpholinobenzo[c]cinnolines.

A structure determination of the title compound, which contains a morpholino group, was undertaken to permit a comparison of its structure with those of previously reported benzo[c]cinnolines to be made.

Experimental. 1-Bromobenzo[c]cinnoline was prepared by bromination of benzo[c]cinnoline (Barton & Lapham, 1979) obtained by reductive cyclization of 2,2'-dinitrobiphenyl with hydrazine hydrate using palladium on carbon as a catalyst. 1-Morpholinobenzo[c]cinnoline was synthesized from the reaction 1 mmol 1-bromobenzo[c]cinnoline in 15 ml of morpholine containing 5 ml dimethyl sulfoxide by refluxing for 96 h. After purification by column chromatography using silica gel and dichloromethane-diethyl ether, the product was recrystallized from petroleum ether. In about 3 d yellow prismatic crystals were obtained from *n*-hexane-diethyl ether. Experimental data, the method used to solve the and other related parameters and structure procedures are given in Table 1. Non-H atoms were included with anisotropic thermal parameters, while H atoms were located on difference syntheses and refined isotropically.

© 1990 International Union of Crystallography

^{*} To whom correspondence should be addressed.

H172 H191

H192 H201

H202

Table 1. Experimental data and structure-refinement parameters

Table 2. Atomic coordinates $(\times 10^4)$ and isotropic or equivalent isotropic thermal parameters $(\text{\AA}^2 \times 10^4, \times 10^3 \text{ for H})$ with e.s.d.'s in parentheses

Method of measuring D_m	Flotation in aqueous KI	
Crystal shape and size (mm)	Prismatic, $0.6 \times 0.6 \times 1.0$	
Diffractometer used and data-collection technique	Four-circle diffractometer (Enraf-Nonius CAD-4), ω-2θ scan	
Number and θ range (°) of reflections used	$25, 45 \le 20 \le 64$	
for measuring lattice parameters	•	Cl
Absorption correction applied, max. and	Semi-empirical (North, Phillips &	C2
min. values	Mathews, 1968), 1.25 and 1.18	C3
Maximum value of $(\sin\theta)/\lambda$ reached in	0.638	C4
intensity measurements (Å ⁻¹)		C5
Range of h, k and l	$-1 \le h \le 13, -1 \le k \le 14, -13 \le l \le 13$	N6
Standard reflections and their intensity	026, 060, 620; -1.2, 3, 3	N7
variation (%) throughout experiment		C8
Number of reflections measured	3717	C9
Number of unique reflections	2632	C10
Number of unobserved reflections	417	C11
Criterion for recognizing unobserved	$I \leq 3\sigma(I)$	C12
reflections		C13
Method used to solve structure	Direct methods	C14
Use of F or F^2 magnitudes in least-squares	F	N15
refinement		C16
Parameters refined	241	C17
Values of R, wR	0.046, 0.057	O18
Method used to calculate w	w = 1	C19
Final residual electron densities (e Å ⁻³) for	+0.30 and -0.30	C20
max. and min. peaks		H2
Max. $\Delta \sigma$	0.02	H3
Source of atomic scattering factors	International Tables for X-ray	H4
	Crystallography (1974)	H9
Computer programs used	SHELXS86 (Sheldrick, 1986),	H10
	CRYSTALS (Watkin, Carruthers &	H11
	Betteridge, 1985), SNOOPI (Davies,	H12
	1983)	H161
		H162
		H171

Discussion. The final coordinates and isotropic or equivalent isotropic thermal parameters are given in Table 2.* The structure of the title compound is shown in Fig. 1. The two benzenoid rings are each planar but twisted with respect to each other with a torsion angle of 11.7° ; in benzo[c]cinnoline the corresponding torsion angle is 2.5° .

As can be seen from Table 3, the bond angles and lengths generally agree with those observed in benzo-[c]cinnoline where the bond angles corresponding to H12—C12—C11, H12—C12—C13, C14—C13— C12, C1—C14—C13, C8—C13—C14 and C5— C14—C13 are 119 (2), 121 (2), 124·9 (2), 124·9 (2), 116·2 (2) and 117·0 (2)°, the C25—C26—H26 angle corresponding to C14—C1—N15 is 120 (2)° and the bond lengths corresponding to C13—C12, C13—C14 and C14—C1 in the title compound are 1·417 (4), 1·436 (3) and 1·417 (3) Å respectively.

The short H12 to N15 distance (2.3 Å) in the title compound is consistent with the ¹H NMR data. This close contact leads to increased twisting in the benzo-[c]cinnoline system, as shown by the large torsion angle, and is the dominating effect in determining the molecular shape, since it generates large C14-C13-C12 and C13-C14-C1 angles (126.6 and

$U_{eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i.$	Я <i>ј</i> .
---	---------------------

x	у	Z	U/U_{eq}
7269 (2)	4287 (1)	2684 (1)	522
7907 (3)	4951 (2)	3704 (2)	732
7219 (4)	5593 (2)	4314 (2)	853
5876 (4)	5567 (2)	3947 (2)	756
5165 (2)	4931 (1)	2878 (2)	612
3805 (2)	4981 (2)	2570 (2)	805
3066 (2)	4498 (1)	1574 (2)	759
3645 (2)	3954 (1)	767 (2)	566
2759 (2)	3541 (2)	- 357 (2)	683
3217 (2)	3049 (2)	- 1223 (2)	667
4584 (2)	2955 (1)	- 1007 (2)	579
5476 (1)	3339 (1)	92 (1)	473
5030 (1)	3842 (1)	1026 (1)	438
5852 (2)	4320 (1)	2196 (1)	467
7997 (1)	3588 (1)	2115 (1)	521
7889 (2)	2397 (1)	2383 (2)	586
8499 (2)	1696 (2)	1600 (3)	775
9843 (1)	1986 (2)	1778 (2)	950
9913 (2)	3122 (3)	1471 (3)	911
9397 (2)	3870 (2)	2305 (2)	762
8978 (27)	4962 (24)	3999 (25)	119 (9)
7636 (29)	6134 (27)	5091 (30)	139 (10)
5321 (24)	5925 (22)	4301 (23)	101 (7)
1788 (23)	3620 (18)	-433 (19)	89 (6)
2611 (24)	2753 (20)	- 1975 (22)	97 (7)
4910 (19)	2643 (16)	-1600 (18)	70 (5)
6447 (16)	3306 (12)	187 (14)	47 (4)
6936 (20)	2193 (16)	2205 (17)	68 (5)
8359 (20)	2256 (17)	3259 (20)	79 (6)
7982 (24)	1841 (20)	685 (22)	97 (7)
8500 (22)	872 (22)	1884 (21)	97 (7)
9409 (28)	3343 (23)	572 (27)	121 (9)
10827 (31)	3291 (24)	1522 (26)	129 (9)
9879 (25)	3750 (21)	3227 (24)	102 (7)
9413 (21)	4691 (21)	2104 (21)	93 (7)

Fig. 1. A SNOOPI (Davies, 1983) drawing of the title molecule with the atom-numbering scheme. The thermal ellipsoids are drawn at the 50% probability level.

126.9° respectively) and smaller C8—C13—C14 and C5—C14—C13 angles (116.3 and 115.5° respectively). The bonds C12—C11, C11—C10, C10—C9, C1—C2, C3—C2 and C4—C3 are significantly shorter than the other bonds in the benzene rings.

^{*} Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52559 (14 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 3. Bond lengths (Å) and bond angles (°) with e.s.d.'s in parentheses

C1C14	1.426 (2)	C9-C10	1.349 (3)
C1-N15	1.417(2)	C10-C11	1.394 (3)
$CI - C^2$	1.384 (2)	C11-C12	1.377 (2)
C2-C3	1.378 (4)	C12-C13	1.411 (2)
C3-C4	1.350 (4)	C13-C14	1.447(2)
C4C5	1.421 (3)	N15-C16	1.467 (2)
	1.412(2)	N15-C20	1.466 (2)
C5-N6	1.372(3)	CI6-C17	1.498 (3)
N6-N7	1.284 (3)	C17-018	1.415 (3)
N7_C8	1.402 (2)		1.409 (3)
C8_C13	1.407(2)	C10-C20	1.514 (4)
	1.406 (2)	C16-H161	0.00(2)
C2_H2	1.08 (2)		0.97(2)
C2-112 C3-113	1.06 (3)	C17-H171	1.07 (2)
C4H4	0.01(3)	C17_H172	1.02(2)
C4-114 C0-140	1.01 (2)	C19H191	1.02 (2)
	0.05(2)	C19-11191	1.02(3)
	0.93(2)	C19-11192 C20 H201	1.01 (2)
	0.92 (3)	C20-11201	1.01 (3)
C12	1.00 (2)	C20—H202	1.01 (2)
C2-C1-C14	119.0 (2)	C10-C11-C12	120.9 (2)
C2-C1-N15	121.2 (2)	C11-C12-C13	120.9 (1)
C14-C1-N15	119·8 (1)	C8-C13-C14	116-3 (1)
C1-C2-C3	122.2 (2)	C12-C13-C8	117.0 (1)
C2-C3-C4	120.3 (2)	C12-C13-C14	126·6 (1)
C3-C4-C5	119.9 (2)	C13-C14-C5	115.5 (1)
C4-C5-N6	115.3 (2)	C13-C14-CI	126.9 (1)
C4-C5-C14	120.6 (2)	C1-C14-C5	117.5 (1)
N6-C5-C14	124.2 (2)	C1-N15-C16	113·2 (1)
C5-N6-N7	120.4 (2)	C1-N15-C20	117.7 (1)
N6-N7-C8	120.1 (2)	C16-N15-C20	109.4 (1)
N7-C8-C9	116.0 (2)	N15-C16-C17	110.3 (2)
N7-C8-C13	123.1 (2)	C16-C17-O18	112.2 (2)
C9-C8-C13	120.8 (2)	C17-O18-C19	109-1 (2)
C8-C9-C10	120.7 (2)	O18-C19-C20	111.2 (2)
C9-C10-C11	119.7 (2)	C19-C20-N15	108.5 (2)
H2C2C1	117.1 (15)	H162—C16—N15	109.2 (12)
H2-C2-C3	120.6 (15)	H162-C16-C17	108.7 (12)
Н3—С3—С2	126.7 (16)	H171-C17-C16	107.6 (13)
H3-C3-C4	113-1 (16)	H171-C17-O18	107.6 (14)
H4-C4-C3	127.9 (16)	H171-C17-H172	115.0 (19)
H4-C4-C5	112.2 (16)	H172-C17-C16	108.1 (13)
H9C9C8	114.8 (12)	H172-C17-O18	106.5 (13)
H9-C9-C10	124-4 (12)	H191-C19-O18	116.2 (16)
H10-C10-C9	120.4 (14)	H191-C19-C20	106-3 (16)
H10-C10-C11	119.9 (14)	H191-C19-H192	102.1 (22)
H11-C11-C10	120.6 (12)	H192-C19-O18	108-1 (17)
H11-C11-C12	118-5 (12)	H192-C19-C20	112.7 (17)
H12-C12-C11	118-4 (9)	H201-C20-N15	106.3 (14)
H12-C12-C13	120-5 (9)	H201-C20-C19	112.6 (14)
H161-C16-N15	109.5 (11)	H201-C20-H202	109·2 (19)
H161-C16-C17	109-9 (11)	H202-C20-N15	106-1 (13)
H161-C16-H162	109-2 (16)	H202-C20-C19	113.7 (13)

The authors are grateful to the Scientific and Technical Research Council of Turkey (TÜBİTAK) for financial support, and to Dr C. K. Prout, Dr A. K. Cheetham and Mr K. Parry of the Chemical Crystallography Laboratory, University of Oxford, England, for provision of laboratory and computer facilities.

References

- ASHBY, J., STYLES, J. A. & PATON, D. (1980). Carcinogenesis (NY), 1(1), 1–7.
- BARTON, J. W. & LAPHAM, D. J. (1979). J. Chem. Soc. Perkin Trans. pp. 1503-1505.
- DAVIES, K. (1983). SNOOPI. Program for drawing crystal and molecular diagrams. Univ. of Oxford, England.
- DOEDENS, R. J. (1970). Inorg. Chem. 9, 429-436.
- ENTWISTLE, I. D., TERENCE, G. & BARTON, J. W. (1981). British patent application 2 059 263 (*Chem. Abstr.* 95, P182265g).
- ERLENMEYER, H. (1958). British patent 794 775 (Chem. Abstr. 52, P418).
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- KING, T. J., MACBRIDE, J. A. H., MUIR, M. & WRIGHT, P. M. (1983). J. Chem. Soc. Chem. Commun. pp. 425–426.
- LEARY, J. A., LAFLEUR, A. L., LIBER, H. L. & BLEMANN, K. (1983). Anal. Chem. 55, 758-761.
- MATTER, M. (1957). US patent 2 778 829 (Chem. Abstr. 51, 11397).
- MEER, H. VAN DER (1972). Acta Cryst. B28, 367-370.
- NORTH, A. C. T., PHILLIPS, D. C. & MATHEWS, F. S. (1968). Acta Cryst. A24, 351-359.
- SHELDRICK, G. M. (1986). SHELXS86. Program for the automatic solution of crystal structures. Univ. of Göttingen, Federal Republic of Germany.
- TOTH, A., FLORIANI, C., CHIESI-VILLA, A. & GUASTINI, C. (1987). Inorg. Chem. 26, 236–241.
- WATKIN, D. J., CARRUTHERS, J. R. & BETTERIDGE, D. W. (1985). CRYSTALS. Program for crystal structure solution. Univ. of Oxford, England.

Acta Cryst. (1990). C46, 1029-1033

Structure of 2,4,8,10-Tetranitro-2,4,8,10-tetraazaspiro[5.5]undecane (TNSU), an Energetic Spiro Bicyclic Nitramine

BY CHARLOTTE K. LOWE-MA

Chemistry Division, Research Department, Naval Weapons Center, China Lake, CA 93555, USA

(Received 3 January 1989; accepted 31 July 1989)

Abstract. $C_7H_{12}N_8O_8$, $M_r = 336.22$, monoclinic, C_2/c , a = 12.831 (3), b = 10.726 (3), c = 19.644 (5) Å, $\beta = 108.13$ (2)°, V = 2569.4 Å³, Z = 8, $D_x = 1.739$ g cm⁻³, λ (Mo K α) = 0.71069 Å, $\mu = 1.47$ cm⁻¹, F(000) = 1392, T = 291 K, R = 0.049 for 1509 reflections with $|F_o| > 3\sigma(F)$. Both rings of TNSU have chair conformations with two of the nitramine groups equatorial and two axial. The geometry of the nitramine groups in TNSU, with average N—N bond lengths of 1.383 (5) Å, average N—O bond lengths of 1.219 (7) Å, and average C—N bond lengths of 1.462 (15) Å, is typical of

0108-2701/90/061029-05\$03.00

© 1990 International Union of Crystallography